Laboratory Evaluation Alphasense OPC-N2 PM Sensor

Background

Three **Alphasense OPC-N2** (units IDs: 216, 222, 308) were field-tested at the SCAQMD Rubidoux fixed ambient monitoring station (07/10/2015 to 08/10/2015) under ambient weather conditions. Now, three new OPC-N2 (units ID: 0508, 1202, 1207) have been evaluated in the SCAQMD Chemistry Laboratory under controlled PM concentration, temperature, and relative humidity.

OPC-N2 PMS1003 (3 units tested):

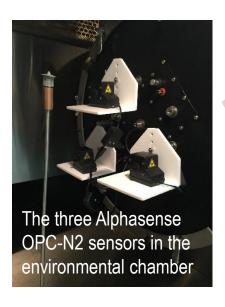
- Particle sensors (optical; non-FEM)
- Each unit measures: PM_{1.0}, PM_{2.5},
 PM₁₀ mass concentration (μg/m³)
- ➤ Unit cost: ~\$450
- > Time resolution: 1.4 to 20 seconds
- Units IDs: 0508, 1202, 1207

GRIMM EDM 180 (ref. method for PM_{1.0}, PM_{2.5} mass):

- Optical particle counter
- > FEM PM_{2.5}
- ▶ Uses proprietary algorithms to calculate total PM, PM_{2.5}, and PM_{1.0} mass conc. from particle number measurements
- Cost: ~\$25,000

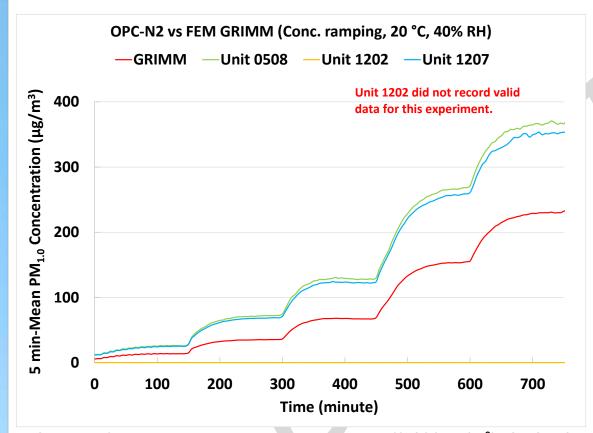
TSI APS 3321 (ref. method for PM₁₀ mass):

- Aerodynamic particle sizer
- Measures particles from 0.5 to 20 μm
- Uses a patented, double-crest optical system for unmatched sizing accuracy
- > Cost: ~\$50,000

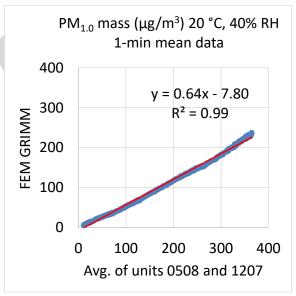


Evaluation results guideline

- OPC-N2 v.s. GRIMM PM_{1.0} mass concentration
- OPC-N2 v.s. GRIMM PM_{2.5} mass concentration
- OPC-N2 v.s. APS v.s. GRIMM PM₁₀ mass concentration



Evaluation results for OPC-N2 PM_{1.0} mass


OPC-N2 vs GRIMM

Coefficient of Determination: OPC-N2 PM_{1.0} vs GRIMM

- Over the full PM_{1.0} concentration range tested (0-230 μg/m³), OPC-N2 units 0508 and 1207 tracked well the diurnal variations as recorded by the GRIMM.
- For this experiment, Unit 1202 did not record valid measurements. Later, Unit 1202 resumed normal data logging by itself.

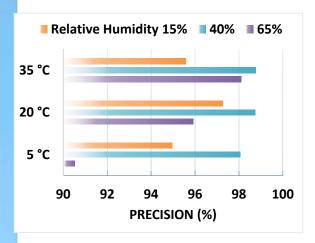
Linearity of Unit Response

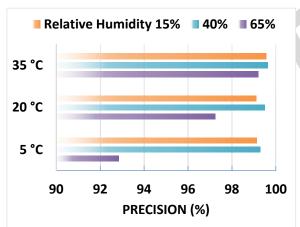
- OPC-N2 units 0508 and 1207 showed excellent correlation with GRIMM PM_{1.0} measurement data (R² = 0.99) between 0-230 μg/m³.
- The OPC-N2 units overestimated the GRIMM PM_{1.0} concentration.

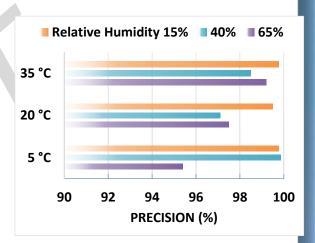
OPC-N2 PM_{1.0} Accuracy

Accuracy (20 °C and 40% RH)

Steady State (#)	Sensor mean (μg/m³)	GRIMM (μg/m³)	Accuracy (%)
1	25.6	13.7	13.4
2	70.6	35.3	0.3
3	125.2	67.2	13.8
4	262.8	153.9	29.2
5	360.2	230.7	43.8

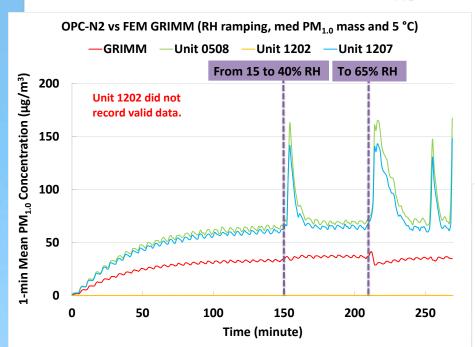

The OPC-N2 units showed low to moderate accuracy levels compared to GRIMM PM_{1.0} over the concentration range of 0-230 μg/m³. Accuracy ranged from 0.3% to 43.8%. In general, OPC-N2 units overestimated the PM_{1.0} mass measured by GRIMM.

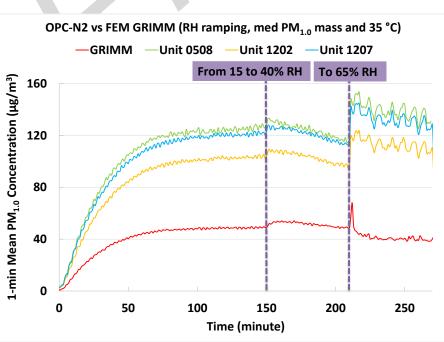

OPC-N2 PM_{1.0} Data Recovery & Intra-model Variability


- Data recovery for PM_{1.0} mass concentration from 0508, 1202, and 1207 was 100%, 42.4%, and 100%.
- Low PM_{1.0} measurement variations were observed between the units 0508 and 1207. Unit 1202 did not record valid data during the intra-model variability test.

OPC-N2 PM_{1.0} Precision

• Precision (%, Effect of PM₁₀ conc., temperature and relative humidity)

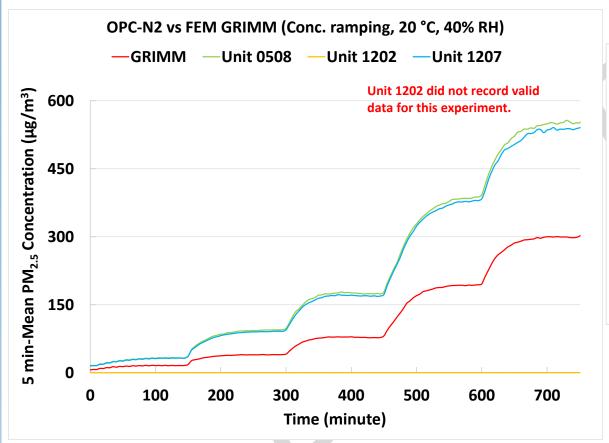




- Overall, the OPC-N2 units showed high precision for most of T, RH, and PM conc. combinations, except for very high humidity conditions at 5, and 20 °C.
- GRIMM's precision was high across all conditions.

OPC-N2 PM_{1.0} Climate Susceptibility

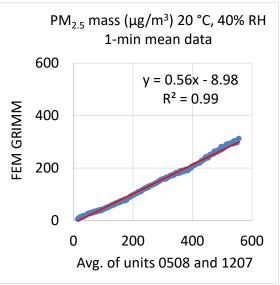
Low Temp – RH ramping (medium conc.)



High Temp – RH ramping (medium conc.)

Evaluation results for OPC-N2 PM_{2.5} mass

OPC-N2 vs GRIMM


Coefficient of Determination: OPC-N2 PM_{2.5} vs FEM GRIMM

• Over the full $PM_{2.5}$ concentration range tested (0-300 $\mu g/m^3$), OPC-N2 units 0508 and 1207 tracked well the diurnal variations as recorded by the FEM GRIMM.

• For this experiment, Unit 1202 did not record valid measurements. Later, Unit 1202 resumed normal data logging by itself.

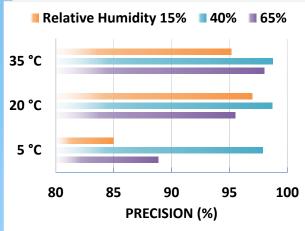
Linearity of Unit Response

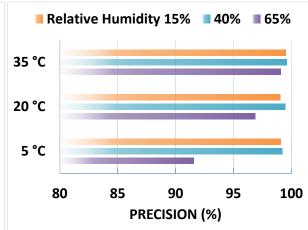
- OPC-N2 units 0508 and 1207 showed excellent correlation with FEM GRIMM PM_{1.0} measurement data (R² = 0.99) between 0-300 μg/m³.
- The OPC-N2 units overestimated the FEM GRIMM PM_{2.5} mass concentration.

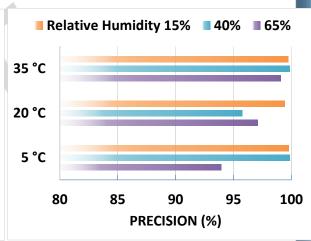
OPC-N2 PM_{2.5} Accuracy

Accuracy (20 °C and 40% RH)

Steady State (#)	Sensor mean (µg/m³)	FEM (μg/m³)	Accuracy (%)
1	32.6	16.0	-3.9
2	93.0	39.9	-33.2
3	171.8	77.8	-20.9
4	382.6	193.3	2.1
5	545.8	299.5	17.8

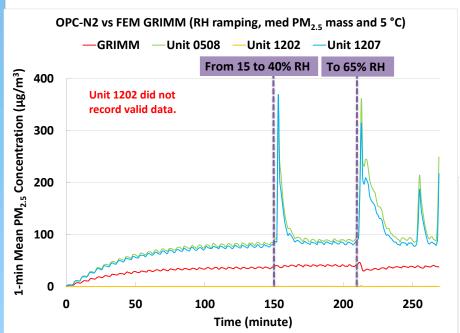

• The OPC-N2 units showed low accuracy compared to FEM GRIMM PM_{2.5} over the concentration range tested (0-300 µg/m³). Accuracy varied from -33.2% to 17.8%. At low to medium PM_{2.5} concentrations, the sensors overestimated the FEM GRIMM by more than 100%, therefore, the calculated accuracy generated negative values.

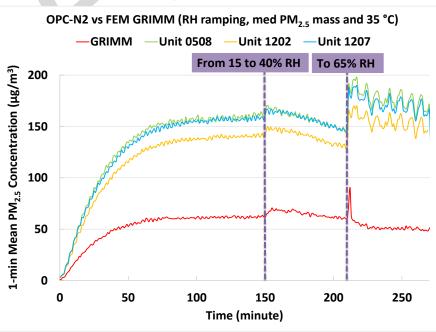

OPC-N2 PM_{2.5} Data Recovery & Intra-model Variability


- Data recovery for PM_{2.5} mass concentration from 0508, 1202, and 1207 was 100%, 42.4%, and 100%.
- Low PM_{2.5} measurement variations were observed between the units 0508 and 1207. Unit 1202 did
 not record valid data during the intra-model variability test.

OPC-N2 PM_{2.5} Precision

Precision (%, Effect of PM_{2.5} conc., temperature and relative humidity)



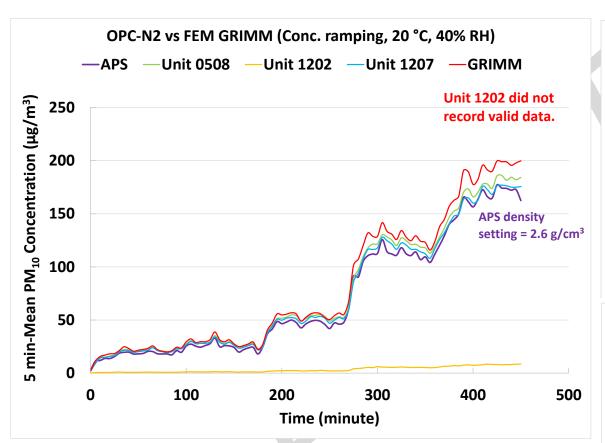


- Overall, the OPC-N2 units showed high precision for most of T, RH, and PM conc. combinations, except for high humidity levels at 5 °C, and also at 5 °C/15% RH.
- FEM GRIMM's precision was also high across all conditions.

OPC-N2 PM_{2.5} Climate Susceptibility

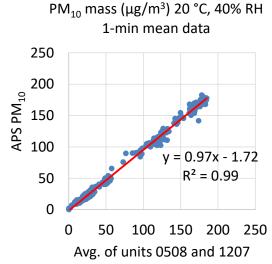
Low Temp – RH ramping (medium conc.)

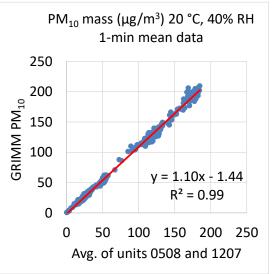
High Temp – RH ramping (medium conc.)


Discussion

- ➤ **Accuracy**: Overall, the OPC-N2 units have low accuracy, compared to the GRIMM PM_{1.0} and PM_{2.5} in the tested range. The OPC-N2 units overestimated the PM_{1.0} and PM_{2.5} mass measured by GRIMM. (refer to slide 6 and 11).
- ➤ **Precision**: The OPC-N2 units have high precision for most of tested combinations (PM concentrations, T and RH), except at high humidity levels at 5 °C. (refer to slide 7 and 12)
- Intra-model variability: Low intra-model variability was observed between units 0508 and 1207. Unit 1202 had significant data loss, and did not record valid data during the intra-model variability experiment.
- ➤ **Data Recovery:** Data recovery from 0508, 1202, and 1207 was 100%, 42.4%, and 100%. Unit 1202 did not record valid data for a period of time, but later it resumed normal performance on its own.
- Linearity of sensor response: OPC-N2 units showed excellent correlation/linear response with the corresponding GRIMM PM_{1.0} and PM_{2.5} measurement data (R² = 0.99 and 0.99, respectively) for mass concentration range between 0 and 300 μg/m³. (refer to slides 5 and 10)
- ➤ Climate susceptibility: From the laboratory studies, low temperature and high humidity affected the precision of OPC-N2 units. (refer to slide 7 and 12)

Evaluation results for OPC-N2 PM₁₀ mass


OPC-N2 vs APS vs GRIMM

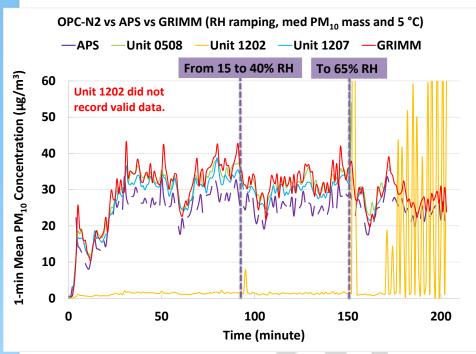

Coefficient of Determination: OPC-N2 PM₁₀ vs GRIMM vs APS

 Over the full PM₁₀ concentration range tested (0-200 μg/m³), the OPC-N2 units tracked well the diurnal variations as recorded by the APS and GRIMM.

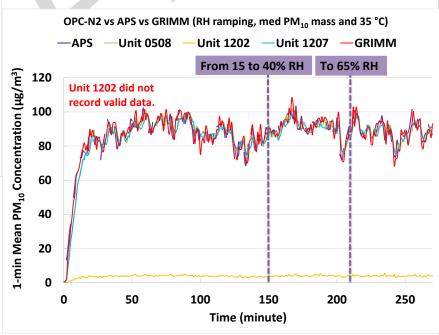
Linearity of Unit Response

OPC-N2 vs APS: Accuracy

Accuracy* (20 °C and 40% RH)


Steady State (#)	Sensor mean (µg/m³)	APS-2.6 (μg/m³)	Accuracy (%)
1	18.7	21.3	86.3
2	22.0	25.3	85.1
3	46.5	51.6	89.1
4	109.3	116.3	93.6
5	172.5	179.6	95.9

The OPC-N2 units had high accuracy when compared to APS. The units' accuracy ranges from 85.1% to 95.9%.


OPC-N2 PM₁₀ Data Recovery & Intra-model Variability

- Data recovery for PM₁₀ mass concentration from 0508, 1202, and 1207 was 96.8%, 9.5%, and 96.8%.
- Low PM₁₀ measurement variations were observed between the units 0508 and 1207. Unit 1202 did
 not record valid data during the intra-model variability test.

OPC-N2 PM₁₀ Climate Susceptibility

Low Temp – RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion

- ➤ **Accuracy**: The OPC-N2 units had high accuracy when compared to APS. The units' accuracy ranges from 85.1% to 95.9%. (refer to slide 17)
- ▶ Precision: Due to the nature of Arizona test dust, the aerosol concentration showed some variability in the chamber, therefore, the precision could not be estimated. At high humidity levels at 5 °C the OPC-N2 units recorded out of range PM₁₀ concentrations in thousands of micrograms per cubic meter. (refer to slide 18)
- ➤ Intra-model variability: Low intra-model variability was observed between units 0508 and 1207. Unit 1202 had significant data loss, and did not record valid data during the intra-model variability experiment.
- ➤ **Data Recovery:** Data recovery for PM₁₀ mass concentration from 0508, 1202, and 1207 were 96.8%, 9.5%, and 96.8%.
- ➤ **Linearity of sensor response**: OPC-N2 units showed excellent correlation/linear response with the corresponding APS PM_{10} ($R^2 = 0.99$) and GRIMM PM_{10} ($R^2 = 0.99$). (refer to slide 16)
- ➤ Climate susceptibility: At low temperature and high humidity levels, the OPC-N2 units recorded out of range PM₁₀ mass concentrations.